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Given a convex function f without any smoothness requirements on its
derivatives, we estimate its error of approximation by C 1 convex quadratic splines
in terms of W3(f, lin). f 1993 Academic Press, Inc.

1. INTRODUCTION

Many results regarding the order of a shape preserving spline
approximation are known when the function to be approximated has
continuous derivative(s). For example, DeVore [4] proves that if
j E C J [0, I], °~j < r, is monotone, then there exists a monotone spline s of
order r with n equally spaced knots such that

(1.1 )

where and throughout this paper II ·11 is the uniform norm and w the usual
modulus of continuity. Interested readers can refer to [I ~7].

On the other hand, if the function j is merely in C [0, 1]. we know very
little. For monotone approximation, DeVore [4] explains why it is
desirable to be able to replace the right-hand side of (1.1) by C,w,(f, lin),
but as he points out his method of proof only yields C,n-1w,_dF, lin)
(when jEC1[0, 1]) (see also [7]). He also remarks that one can get w,
when r = 1, 2, but we now know [13] that this is impossible for r> 3 so
that the most one can get is what DeVore's proof could yield. Here

wAf, t):= sup 11L1;,(f)II, t > 0
O<h,,;;t
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,1;,(/: x) = it (:) (-1)'+ 'l(x + ih), x, x + rh E [0, I].

For convex approximation, it is known that a convex function IE C[O, I]
can be approximated by (even first degree) convex splines at the rate of
(1)2(/: lin). Since (1)J(/: lin) is the optimal order for unconstrained
approximation by quadratic splines with n equally spaced knots, we would
also like to have the same rate for convex approximation. It should be
noted, as Professor X. Yu pointed out to the author, that we cannot
replace (1)3 even by w 4 (/; I), for if I is a cubic polynomial, then
(1)4(/: I) = 0, and no quadratic spline approximates a cubic polynomial
exactly.

It is the purpose of this paper to show that W J can be reached for any
continuous function. More precisely, we prove that one can approximate a
convex function IE C [0, I] by C I convex quadratic splines with at most n
knots at the rate of WJ (/; I In). We recall that a function I defined on an
interval I is said to be convex if for any x, y E I and any 0 ~), ~ 1 we have

(1.2)

If the equality in (1.2) does not hold unless J. = 0 or I, then I is said to be
strictly convex. Geometrically this means that each point on the chord
between (x,j(x)) and (y,j( y)) is above the graph of.f It is not difficult
to see the facts listed below (cf., for example, [10, Sect. 5.5]): Suppose I is
convex, then

( I) the tangent line of I at any point x E I, if exists, lies below the
graph ofI

(2) on any closed interval contained in I, f is absolutely continuous;

(3) if three points on the graph off at x I < X 2 < X J are collinear, then
the graph between x I and x J is a line segment.

The following is our main theorem, whose proof will be given in Section 3
at the end of this paper.

THEOREM 1.1. Let fE C[O, I] he convex, and n a positive integer. Then
there is a C I convex quadratic splin£' s with at most n knots in (0, I), such
that

(1.3 )

with C an ahso/ute constant.
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In fact, in the proof of Theorem 1.1, we shall construct a spline s with
less than 8n knots. Since w 3(f, 81m) ~ 83W3(f, 11m) for any m > 0, we
obtain (1.3) from this. The 8n knots are arranged in 2n groups which are
basically equally spaced. More precisely, we shall first interpolate f by a
quadratic polynomial Pi on each subinterval [x" X i +2] at Xi' X,+ I and
x" 2, i = 0, 1, ... , 2n - 2, where Xi := i/2n, i = 0, I, ... , 2n. Since fis convex, so
are the resulting overlapping quadratics. We will then transit from Pi .. I to
Pi by a convex spline s, for each i = 1, 2, ... , 2n - 2 to get a final global
approximating spline. This Si' which we call the transiting part of the pair,
will be defined on some transiting interval J i := [t i , I' t i• 2], and consist of
at most two pieces of quadratic polynomials. The final spline s is to be in
C I, this means we should have

S~iI(ti. 1) = p~l) 1(t i. 1)' j= 0,1. (1.4 )

The first question we face is where to put Ji • It is tempting to put it some
where inside [X i ,Xi + 1] to prevent the transiting parts Si from interfering
with each other. It would work perfectly if f were strictly convex, but this
is not always the case. The possible existence of line segments in the graph
off requires a more sophisticated method. To develop such a method, we
need some technical lemmas which are given in the next section.

2. PRELIMINARY RESULTS

When creating a global spline from local polynomials, we will frequently
meet the following interpolation problem.

PROBLEM 2.1. Let t l < 12 , and leI YI, Y2, Sl and S2 be any given real
numbers. Find a quadratic spline SECI[t l , t 2 ] such that

S(ti)=Yi' S'(ti)=Si, i = 1, 2. (2.1 )

One answer to this problem is given by the following three simple
lemmas by Schumaker [12]. For similar techniques, the reader can also
refer to numerous previous papers on shape preserving quadratic spline
interpolation by Roulier and various coauthors, as pointed out by a referee
of this paper. See [8, 9, 12] and references therein.

LEMMA 2.2. There is a quadratic polynomial solving Problem 2.1 if and
only if

SI+S2 .h-YI------ (2.2)
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If (2.2) holds, then the polynomial is given by

(s2- s d(x-td2
S(X)=YI+SI(X-t l )+ .

2(t2- t d

LEMMA 2.3. For every ~ E (tl> t2), there exists a unique quadratic spline
s with one simple knot at ~ solving Problem 2.1, and it is given by

with

t l ~x <~,

~~X~t2'
(2.3 )

where

(2.4 )

(2.5 )

LEMMA 2.4. Let b=(Y2-yd/(t2-td. Then (s2-b)(b-SI)~0 implies
that s must have an inflection point in the interval 1:= [t I' t2] unless
sl=s2=b, which is a trivial case. Suppose now that (S2-b)(b-sl»0.
Then the condition IS2-bl < Ib-sll implies that lor all ~ satisfring

(2.6)

the interpolating spline s in (2.3) is convex if s I < S2' is concave if s I > S2' In
addition, if SI S2;?; 0, then s is also monotone. Similarly, if IS2 - 151> 115 - sll,
then for all ~ satisfying

with (2.7 )

s also has the above properties.

Remark. The case of IS2 - 151 = 115 - 05 11 is given by Lemma 2.2.

The intervals (t I' (] and [~, t 2) are called the admissible intervals for
convexity [5]. To make our further discussion short, from now on the
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word "parabola" will be used for pj only if it is true parabola, i.e., p;' > 0,
otherwise the word "line" will be used instead. A close study of our
situation with the aid of these three lemmas suggests that although it is
always possible to transit from Pj-l to pj inside [Xj, X j + j], there is no way
to make Sj convex there if one of Pj_ j or Pi is a line (Line-Parabola
and Parabola-Line cases, or, for short, LP and PL cases), therefore in
these cases J j has to be moved partly outside, across Xi or X j + I' As a
consequence, J j has to be put inside the open interval (x j , Xi + I) when they
are both parabolas (PP case), to make room for LP and PL transition.
More efforts will be made in the proof of Theorem 1.1 to prevent interference
of the transiting parts.

We have also to determine the position of the (possible) interior knot ~j

of Sj to make sure that Sj is indeed convex, and its approximation error is
not too large. It is clear that after the position of J j has been determined,
all numbers in (2.1) are fixed, thus Sj depends only on the choice of ~j'

Because of (1.4), this choice only affects the behavior of Sj in the middle of
J i • This influence can be described in terms of the second derivative s;' of
Sj as in the following lemma, which shows how s;' changes as ~i runs over
the admissible interval. We make the assumption b = 0 to simplify the
computation, and keep using the notation of Problem 2.1 to avoid complex
subscription.

LEMMA 2.5. Let II := (tl, 0 and 12 := (~, t2). Let y, = Y2, i.e., b = 0, and
s, < 0 < S2' Then the second derivative s" of S in (2.3), which is piecewise
constant as a function of x, is a monotone function of~. More precisely, we
have:

(1) ifls21<ls,l, then as ~ runs over the admissible interval (tl'~]'
o5"(x) runs from +00 to (l-(sl+s2)/2s z)(sz-Sj)/(tz-tdfor xEl j , and
from 2s z/(tz-td to ofor xEIz;

(2) if ISzl>lsll, then as.~ runs over the admissible interval [~,tz),

s"(x) runs from 0 to -2s,/(t2-tdfor XEI" andfrom (1-(s,+sz)/2sd
(sZ-Sd/(t2-td to +00 for xEIz.

The results hold true if we simultaneously replace s, < 0 < Sz and + 00 by
s, > 0 > S2 and - 00, respectively.

Proof We first compute s" from (2.3), (2.4), and (2.5). For xEI"

"( )-2C _S~-SI_(-:':S,-fJsJ/(tz-t,)-o5l
sx- 1- -

~-t, ¢-t,

- (~- tds, - (t z - Oo5z - (t 2- tdsj

(tz-t,)(¢-t,)
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~S2-~SI +2tISI-t2S1-t2S2

(t 2 - t d( ~ - t d

S2-SI S,+S2
=-----

t 2-t 1 ~-tl
(2.8)

Similar computation shows that for x E 12 ,

(2.9)

It is now easy to see that s" is monotone in ~. For the values of s", we only
show the case of IS21 > ISII and xE/I, the other cases are similar. Indeed,
when

therefore

S"(X)=S2- S I_(S,+S2)(S2- S I) O.
t 2t 1 (t2- t l)(SI+S2)

And as ~ -+ t2 -,

Our next lemma says that we can transit from a line to a parabola on
an interval [t I' t2] which contains at least one of their intersection points,
so that the transiting spline is convex and lies in certain region, which
enables us to control the approximation error. This will be used for LP (or
PL) transition. The interval [t I' t2] here corresponds to the transiting
interval J i = [t i. l' t i. 2], and the point (.x, .v) corresponds to the intersection
point (Xi,f(X i )) (or (x i+ I ,f(x i + 1 ))) of Pi- 1 and Pi inside J i·

LEMMA 2.6 (for LP or PL Transition). Let ~ < t l <.X < t 2, and Y2 and .I'
he two real numhers. Let P he the quadratic polynomial passing through
(~, .1') and (t2' .1'2) with p"=a>O, and 10 the line segment passing through
the -same two points. Let I he the straight line passing through (tl' .1',):=
(t" lo(t,)) and (.x, n:= (.x, p(.x)). Then there exists a C convex quadratic
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spline s on [t I' t2] with a possible simple knot ~ E (t I' t 2) which transits from
I to p in the sense that

J= 0, 1. (2.10)

Moreover, max (I, p)~s~/o on [tl> t 2l
If we exchange the positions of t I and .\', i.e., replace ~ < t I <.X' < t 2 by

~ <.X' < t I < t 2' then there exists a convex transiting spline 5 on [.J, t I] with
similar properties.

Proof We can suppose Y2 = Y =0, the general case can be obtained by
linear change of variable. Now I;becomes y = °(see Fig. 1.) We only prove
the case ~ < t I < .i < t2, the other case is similar. It is easy to see that
p(x)=1a(x-t2)(X-~) and I(x)=sl(x-td with Sl :=.YI(.X'-td, that
p < ° on (~, t 2), in particular, .v = p(.X') < 0, therefore, 51 < 0. A simple
computation shows that S2 := p'(t2) = 1a(t2 -~) > 0, 54 := p'(~) =
1a(~ - t 2 ) = -S2 < 0, and

(2.11 )

The first part of the lemma is now given by Lemmas 2.2 and 2.4. For the
second part we need s~o, 5~1 and s~p on [t l , t 2 l

It is obvious from the properties of convex functions listed in Section 1
that s~o for s(td=s(t2)=0 and s is convex. It is also obvious that s~1
for I is the tangent line of s at t l' We now show in three cases that we can
have s~p.

Case 1. ISII = IS21. We have 51 = -S2 = 54' Lemma 2.2 says that 5 is
the unique quadratic polynomial satisfying (2.10) with

~~2/10 s: '

p ,

1

FIGURE I
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By Taylor's Theorem, we have

s(x) - p(X) = [S(t 2) - p(t2)] + [S'(l2) - p'(t2)](X- t 2)

+r (x - t)[S"(1) - p"(I)] dt
'2

= r (t-X)[S"(t)-p"(t)] dt~O.
<

(2.12 )

Case 2. ISII < IS21. Here s is not unique and depends on the position
of the knot ~ in the admissible interval [5, t 2 ) for convexity. Lemma 2.5
says that Iim~ ~ '2- S" = + 00 on 12 = (~, t 2 ), thus we can choose ~ close
enough to t 2 so that on 12 S" > p", hence s ~ p by (2.12 ), in particular, s( ~) ~

p(O, (in fact, s(O > p(O). If, for this choice of~, s" ~ p" on II = (II' ~), the
same argument applies. If s" <p" there, we turn to look at the difference
¢J := s - p, which is a parabola open downward with ¢J( t d > 0 and ¢J( 0 > 0,
therefore ¢J> 0, i.e., s > p, on the whole interval II'

Case~. ISII > IS21. This is similar to Case 2. Here the admissible inter
val is (I I' ~]. By Lemma 2.5, Iim~ ~ 11 + S" = 2s2/(l2 - t d > 2s2/(l2 -:s) = p"
on 12 , Thus we can choose ~ close enough to t l so that s" > p" on 12 ,

therefore s~p on [t l , t 2 ] by exactly the same argument as that in
Case 2. I

Lemma 2.7 below will be used for transition between two parabolas. It
says that in this case J; can be put inside the open interval (x;, x i + d to
make room for possible neighboring LP (or PL) transition, that there
exists a transiting part s; lying between Pi- I and Pi' thus approximating f
no worse than they do. Again, we use the notation of (2.1) to avoid
complex subscription.

LEMMA 2.7 (for PP Transition). Let (:s, y) and (i, y) be two points in
the plane with :s < .x. Let PI and P2 be two strictly convex quadratic polyno
mials, both passing through the tlVO points. Then there exists a convex C 1

quadratic spline s on an interval [t l , t2] c (:s,.X) with a (possible) simple
knot ~E(lI' t2), such that

and s lies between PI and P2'

)=0, I, (2.13 )

Proof We again make some simplification, the general case can be
obtained by linear change of variable. Suppose (:s, y) = (-1,0) and
(i, .v) = (1,0). Then the two polynomials can be written as PI = !a l (x 2

- I)
and P2 = !a2(x2 - I), where a l and a2 denote their second derivatives. We



CONVEX APPROXIMATION 77

also assume a 1 # a2' since the result is trivial if a 1 = a2. We can further
assume 0 < a 1 < a 2' since the other case, 0 < a 2 < a I' is very similar (in fact,
they are geometrically symmetric; see Fig. 2).

We prove this lemma also by Lemmas 2.4 and 2.5. Let us check their
conditions first. Since Pl(±I)=P2(±I)=0, P2(0)= -~a2<PI(0)=

- ~al < 0, it is easy to prove that

X E ( -I, I). (2.14 )

We choose II arbitrarily in (-1,0), and define 12 as JI - (al/a2)(1 - Ii),
the positive root of the equation P2(X) =PI (t d, then -I < 11 < 0 < 12 < I.
Denote

i= I, 2,

we have Y 1 = Y2, i.e., e5 = 0, and s1 < 0 < Sz. The last thing to check before
using the lemmas is the relationship between ISII and IS21. It turns out that
Is II < IS21. This is because

2 2 a 1 2 2 (a l ) 212 - 11 = I - - ( I - 11) - 11 = I - - (I - 1I ) > 0,
a2 02

thus 12 > 11 11, and S2=02 12>°112>°11111 = ISII.
We now apply Lemma 2.4 to the interval [1 1,12 ] and obtain all the

results but the position of the resulting convex spline s, which depends on
the choice of the knot ~ E I,. := [5, (2 ), If we can choose ~ so that

(2.15 )

then the same argument as that in Case 2 in the proof of Lemma 2.6 will
give that S?:P2 on [11' 12J, and a similar argument will show PI?:S on the

FIGURE 2
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same interval, which will finish the proof. This IS possible because, by
Lemma 2.5,

" - 2.1' I - 2a , t I a, It I I - a , t , a 1 t 2 - a , t ,
.I' <--= = < =a 1t2-t, t 2-t[ t2-t[ t2-t,

on I, for any ¢ E Ie' and lim~ ~" s" = + Cf) on 12 , If we choose ¢ close
enough to t2, then .1''' will satisfy both conditions in (2.15). I

Remark. Note that only one of the endpoints of the transiting interval
[t" t2] can be arbitrarily chosen in one half of the interval [- 1, 1], (for
example, as the midpoint of the half.) the other will be determined by
the lemma and may be very close to I or - I, depending on the relative
relationship of PI and P2' This makes it more difficult to prevent
interference of the transiting parts.

The last lemma we need in the proof of Theorem 1.1 says that our local
interpolating polynomials approximate f "nearly" as well as the best ones.
Because it is an immediate consequence of Newton's formula for inter
polating polynomials and Whitney's Theorem, we omit the proof.

LEMMA 2.8. Let fE C[a, h], and let p he the quadratic polynomial inter
polating f at a, (a + h)/2 and h. Then

(2.16)

with Co> 0 an ahsolute constant.

3. PROOF OF MAIN THEOREM

We are now in a position to prove our main theorem.

Proof of Theorem 1.1. The proof will be given in three parts: construc
tion of overlapping quadratics, an algorithm that transits from each
quadratic to the one next to it, and error analysis. Given n, the final goal
is a C t convex quadratic spline s with at most kn knots in (0, I) which
approximatesfwith an order w,(f, I/n). We mentioned the positive integer
k at the beginning of this paper, whose value will be determined as 8 later
in the proof. Denote c := Cow,U: l/n) with Co as in Lemma 2.8, we can
assume r. > 0, for r. = 0 meansj'is a quadratic polynomial [II, Thm. 2.59],
we can simply takes = f

We first construct 2n - I overlapping quadratics as follows: Let
x,:=i/2n, i=0, ... ,2n, and I,:=[x"x'+2]' i=0, ...,2n-2. Define on each
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Ii a quadratic Pi by interpolating/at Xi' X i + 1 and X i + 2 . Sincefis convex,
so is each Pi' The approximation error of Pi is given by Lemma 2.8:

(3.1 )

Next we give an algorithm to transit from Pi 1 to Pi for each
i = 1,2, ..., 2n - 2, with the aid of the previous lemmas. The algorithm
proceeds from the left to the right. When a transition involves a line, it may
work on two pairs (three pieces) at a time, because such a transition will
go half way out of [Xi' X i + I] and might interfere with neighboring transi
tions otherwise. Since f is (uniformly) continuous on [0, 1], there exists
a <5 1 >0 such that for any X, yE [0,1], Ix-yl ~<51' If(x)-/(y)1 ~I:.

Define <5 := min(<5 I' 1/4n), it will be used to determine the lengths of some
transiting intervals J i •

The algorithm works as a loop, in each pass of the loop, it calls one of
the following "subroutines" according to the transition type indicated by
the abbreviation before them. For example, LL means Pi I and P, are both
lines, and LPP means Pi I is a line, Pi and Pi+ 1 are both parabolas, etc.
The index i runs over the interval [1, 2n - 2], increasing by 2 in LPP or
LPL, by I in other cases. For convenience, we consider P2n I as a parabola
when choosing the subroutine, although it is not defined. We also define
10. 2 :=Xo and 1211 1.1 :=X 211 for the same reason. The reader is urged to
draw his/her own pictures to show the geometric nature of the arguments.

PP. This is the simplest one. We transit from P, I to P, by a C
convex spline s, whose existence is guaranteed by Lemma 2.7. This .I'i is
defined on some transiting interval J i := [Ii. l' Ii. 2] C (X" X i + 1) with a
simple knot ¢, E (I,. I' I i,2).

LPP. Lemma 2.6 says the transiting interval J,= [/,.1' li,2] for P, 1

and Pi will get into the interval (x i + I' X/+ 2) and therefore might interfere
with J,+ 1= [/,+ l.I' li+ 1.2] unless we know the position of 1,+ l.I in
advance. If i = 2n - 2 this gives no problem at all since Pi+ ,exists only in
our mind, and li+ 1, I = 1211 _ 1, I was defined as X211' If i < 2n - 2, we have to
make the transition from Pi to Pi + I first by calling the subroutine PP,
which gives the position of J, + 1C (x i + I , Xi + 2)' We now make the
transition from Pi I to P, as follows: Let li. I := X, + 1- <5, and 1,.2:=

min(x i + 1+ 6, li+ 1, I)' ant let Ii be the chord between (1 i . l' P, 1(f,. I)) and
(li. 2' Pi(li. 2))' The difference ¢Ji:= Pi -Ii is a convex parabola with

64004.1-6
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Since Pi- I is the chord of Pi on [X;, X;+ I] which contains ti. J, we have
¢J,(ti. d < O. Therefore there is another point x' such that ¢Ji(X') = 0, i.e.,
li(x')=p;(x'), with x'<t,.,<X;+I<t;.2 since lim<~_w¢Ji(x)= +00. The
situation here satisfies the conditions of Lemma 2.6, hence we can find on
J; a convex quadratic spline Si transiting from Pi- 1 to Pi in the sense of
(IA), with

I;(x) ~ s;(x) ~ max(pi _ I (x), p,(x», XEJ i (3.2)

LPL. That Pi- I and P;+ I are lines implies the restrictions of Ion
1;-1 and li+ 1 are line segments, with/=Pi_, on 1;_1 and/=pi+ Ion li+ I'
we are actually smoothing 1 itself. We abandon Pi' and transit from Pi-l
to Pi+ 1 near X;+ 1 as follows: Let t i. 1 := Xi+ I - b, ti+1, 2 := Xi+1 + b, and Ii
be the chord of1 between t i. I and t i + I, 2' Since subtracting the equation of
I; from those of 1;, Pi-I and P;+ I will result in an isosceles triangle with the
base Ii horizontal, it is clear that we can apply Lemma 2.2 (through a linear
change of variable) to transit from Pi _ 1 to Pi + I by a convex quadratic
polynomial on [ti. I' t H 1.2]. It is trivial to see from the properties of
convex functions that this polynomial lies within the triangle enclosed by
I;, Pi-I' and P;+ I' The subscripts of t i+ I. 2 are not what one may expect,
the reason is that in this proof by J i = [ti. I' t;. 2] and s; we always mean the
transiting interval and parabola (or spline) for Pi-I and PI' but here we
abandoned Pi and are working on Pi-I and Pi+l' To further keep our
notation consistent, we define t i. 2 : = t i + I. I : = Xi + 1, and split the transiting
interval and parabola into two pieces at this point: let J,:= [ti. I' ti. 2],
J i + 1 := [t H I. I' t i + 1.2], define Si as the part of the transiting parabola on
J;, and Si+ I as the part on J i+l' This will be convenient later in the
definition (3.3) of the final approximating spline.

LL. That Pi- 1 and P, are both lines implies the restriction of Ion
[xi-I' Xi + 2] is a line segment, and f, Pi _ 1 and P; are all identical.
Although we have nothing to do here, we still like to define
J,:= [t,.I' ti,2]:= [Xi' x,] as a one-point-set and Si :=Ion J i for the same
reason as in LPL.

PL. We note that Pi- 2 can not be a line if this subroutine is called,
since that would be an LPL case in the last pass of the loop and have
already been done. So we only have two cases here: P;-2 is a parabola or
i = 1. In either case t i-I, 2 has been defined and is less than X;, therefore we
can transit from Pi-I to Pi as follows: Define ti,! :=max(xi-b, ti-l,2)

and ti,2:= Xi + b. Let I, be the chord between (t i. I' Pi dt;. I)) and
(t i. 2, p;(ti,2))' An argument very similar to that in LPP shows that we can
find an s; on J, := [ti. I' t i . 2 ] with the same properties.

We are now ready to define the final approximating spline s. Since Si



CONVEX APPROXIMAnON 81

always denotes the spline piece transiting from Pi-I to Pi on J; = [f;, I' f i, 2],
it is natural to define

( ) '= {Si(X),S x .
Pi(X),

X E J;, i = 1, ..., 2n - 2

f i,2<X<f;+I,I, i=0, ...,2n-2.
(3.3 )

It is obvious from the construction that s is a C 1 quadratic spline. It is also
obvious that s is convex on [0, 1] since it is piecewise convex and has a
continuous first derivative. As for the number of its interior knots, there are
2n - 1 x;'s in (0, I); for the transition of each of the 2n - 2 pairs of over
lapping p;'s, no more than three knots were added, this gives no more than
6n - 6 additional knots, therefore S has no more than 8n - 7 < 8n interior
knots, i.e., we can take k = 8 as claimed at the beginning of the proof.

The last part of the proof is error analysis. If f i, 2 < X < ('+ I, 1 for some i,
by (3.3) and (3.1) we have

If(x) - s(x)1 = If(x) - Pi(x)1 ~ B. (3.4 )

If x E J; for some i, we estimate the error according to the transition type.
In type PP, 5 i lies between P,_I and Pi' (3.4) still holds by (3.1). In type
LL, all functions are identical, there is no error at all. The remaining three
types are basically the same, the following estimate is for PL and (the LP
part of) LPP types. For LPL, only the notation needs changes, because we
divided the transiting part and interval into two parts. We recall that in PL
and LPP, 5 i transits from Pi. I to Pi on J i := [f i, l' f i , 2]' with f i • 1 <.\' < f i, 2,
Ifi,I-.\'1 ~b and If;,2-xl ~b, where x=xi for PL and X=X;+I for LPP,
thus by the choice of J

If(x) - f(x)1 ~ B, any xEJ,. (3.5)

We also recall that Ii is the chord between the points (f i, I' Pi _ I (I;. d) and
(Ii, 2' p;(f;,2), therefore by (3.1) and (3.5)

1/,(I;,2)-f(x)1 = Ip,(ti.2)-f(·i)1 ~ Ip,(tu)-f(l;,2)1 + If(l;,2)-f(.\')1 ~2B.

Similarly,

I((f" d - f(x)1 ~ 2B.

Since ( is a line segment, we have for any x E J;

1/;(x) - f{-i)1 ~ 2B,

Iii (x) - f(x)1 ~ Iii (x) - f('\')1 + ifF) -f(x)1 ~ 2B + E: = 31:.
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Combine this with (3.1) and (3.2) we obtain

We now finish this proof by stating

for any x E ii-

Is(x) -/(x)1 ~ 31: = 3COW3U; lin),

or

with C:= 3eo an absolute constant. I
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